Human olfactory receptor 17-40 as active part of a nanobiosensor: A microscopic investigation of its electrical properties

نویسندگان

  • Eleonora Alfinito
  • Jean-Francois Millithaler
  • Lino Reggiani
  • Nadia Zine
  • Nicole Jaffrezic-Renault
چکیده

Increasing attention has been recently devoted to protein-based nanobiosensors. The main reason is the huge number of possible technological applications, going from drug detection to cancer early diagnosis. Their operating model is based on the protein activation and the corresponding conformational change, due to the capture of an external molecule, the so-called ligand. Recent measurements, performed with different techniques on human 17-40 olfactory receptor, evidenced a very narrow window of response in respect of the odour concentration. This is a crucial point for understanding whether the use of this olfactory receptor as sensitive part of a nanobiosensor is a good choice. In this paper we investigate the topological and electrical properties of the human olfactory receptor 17-40 with the objective of providing a microscopic interpretation of available experiments. To this purpose, we model the protein by means of a graph able to capture the mean features of the 3D backbone structure. The graph is then associated with an equivalent impedance network, able to evaluate the impedance spectra of the olfactory receptor, in its native and activated state. We assume a topological origin of the different protein electrical responses to different ligand concentrations: In this perspective all the experimental data are collected and interpreted satisfactorily within a unified scheme, also useful for application to other proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Update of Nanobiosensors Using Olfactory Sensing Elements and Nanomaterials

Various biomaterials such as antibody, aptamer, enzyme, DNA and sensory receptor can be used for recognizing ligands by nanobiosensor. Especially, olfactory sensing elements with olfactory receptor are most promising one to develop the nanobiosensor with high performance because they can discriminate target molecules with high selectivity and also detect numerous odorant molecules, for example ...

متن کامل

Olfactory receptors for a smell sensor: A comparative study of the electrical responses of rat I7 and human 17-40

In this paper we explore relevant electrical properties of two olfactory receptors (ORs), one from rat OR I7 and the other from human OR 17-40, which are of interest for the realization of smell nanobiosensors. The investigation compares existing experiments, coming from electrochemical impedance spectroscopy, with the theoretical expectations obtained from an impedance network protein analogue...

متن کامل

Investigation of the Effect of Adding Aluminum Trihydrate (ATH) Particles on Electrical and Hydrophobic Properties of Two-Part RTV Silicon Rubber

In this paper, the effect of adding aluminum trihydrate (ATH) on electrical (including dielectric constant, dielectric loss and strength, volume and surface resistivity) and hydrophobic properties of two-part room temperature volcanized (RTV) silicone rubber resin coatings were investigated. For this purpose, the RTV-ATH nanocomposite was made by physical mixing and its electrical and hydrophob...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

Fabrication and characterization of SnO2 and SnS2 nanobiosensor in the Presence of Aspergillus Niger Fungi

In this paper, SnO2 and SnS2 thin films were prepared by spray pyrolysis technique on glass substrate. The prepared films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Aspergillus niger (A. Niger) fungi were grown in an appropriate medium and were exposed to the synthesized SnO2 and SnS2 thin films in a closed glass vessel to measure their nano-biosensing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011